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Abstract—A method is presented for calculating stress intensity factors at the tip of a slightly wavy
three-dimensional crack. The solution is used to calculate the direction of propagation of an
initially planar semi-infinite crack, which is subjected to uniform remote loading. In particular, the
combinations of remote load which cause the crack to deviate from its original plane are found.
For the particular case of a two-dimensional crack subjected to combined mode 1 and mode II
{oading, we recover the results of Cotterell and Rice [1980, Int. J. Fract. 16(2), 155]. For a crack
loaded by combined mode I and mode III loading, it is shown that there is a critical ratio of Ki;/K;
which causes the crack to deviate from its original plane. The influence of T-stresses, which act
parallel to the crack plane, is also investigated. Finally, the predictions of the perturbation theory
are compared with full-field numerical simulations which predict the path of a crack propagating
under mixed mode remote loading.

1. INTRODUCTION

When a crack propagates through a brittle solid, if often follows a tortuous path. Inhomo-
geneities such as grain boundaries and second phase particles tend to deflect cracks ; local
variations in residual stress within the material have a similar effect. In addition, if the
loading applied to the solid induces mixed-mode stress intensity factors on the crack tip,
then the crack generally deviates from its initial plane. The strength of the solid may depend
strongly on the path followed by the crack, for several reasons. For example, if the crack
meets reinforcing particles, they may cause the crack to arrest and so enhance toughness.
The crack path also determines the roughness of the crack faces. If the roughness is
sufficiently large, the crack faces may contact. The resulting friction forces between the
crack faces tend to reduce the crack tip stress intensity factors and so improve the apparent
toughness of the material. This effect is thought to be particularly important in mixed mode
I/mode III fracture (Suresh and Tschegg, 1987 ; Tschegg and Suresh, 1988; Suresh er al.,
1990).

It has been shown that the principles of linear elastic fracture mechanics can be used
to predict the path of a crack in a brittle solid. A number of authors have investigated the
behavior of a crack subjected to mixed mode I and mode II loading. Experiments show
that if a planar crack is loaded by a combination of K| and Kj,, it initially branches at a
characteristic angle, and thereafter approaches a trajectory which is perpendicular to the
maximum principal stress (Radon ef al., 1977). Various criteria have been proposed to
predict the angle at which the crack kinks. Examples include the maximum hoop stress
criterion (Erdogan and Sih, 1963 ; Williams and Ewing, 1972; Finnie and Saich, 1973;
Ewing and Williams, 1974; Ewing et al., 1976), the maximum strain energy release rate
criterion (Cotterell, 1965 ; Palaniswamy and Knauss, 1978) and the stationary Sih energy
density factor (Sih, 1973, 1974). The criteria predict slightly different angles for the initial
kink but they all predict that, once the kink has initiated, the trajectory of the crack is such
that K;; = 0 at the crack tip. To predict the crack path, one must find a crack shape that
satisfies K, = 0 during all stages of crack growth. One approach to this probiem is to
calculate the stress intensity factors for the crack using a numerical method and to extend
the crack incrementally. The direction of each increment in crack length is chosen so as to
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satisfy the appropriate fracture criterion. Fleck (1991) has used this technique to calculate
the path of arrays of cracks subjected to a range of remote loads. An alternative approach
to predicting crack trajectories in two dimensions has been developed by Cotterell and Rice
(1980). By perturbing the complex potentials which generate the stress fields around a
planar crack, they found remarkably simple expressions for the stress intensity factors for
a slightly wavy two-dimensional crack. Similar perturbation methods have also been used
by several other authors (Banichuk, 1970 ; Goldstein and Sagalnik, 1974 ; Karihaloo et al.,
1981 ; Sumi et al., 1983). The results of these calculations have been used to predict the
conditions necessary to cause a planar crack to deviate from is initial plane. Provided that
the crack trajectory does not deviate too far from a planar configuration, it is also possible
to find closed form solutions for-the crack path.

The analogous three-dimensional problem of a crack subjected to mixed mode I and
mode III loading is not as well understood. Experiments show that this type of loading can
cause cracks to propagate along a wavy path. For example, if a circumferentially pre-
cracked bar is fractured by a combination of torsion and tension, then it is found that the
macroscopic fracture surface remains perpendicular to the axis of the shaft, irrespective of
the ratio of K,/K},;. However, under mode III loading, the fracture surface becomes very
rough. The roughness greatly exceeds the crack opening displacements and it is clear that
the microscopic crack path deviates appreciably from a planar configuration. Due to the
abrasion between the crack faces, it is usually difficult to discern any pattern in the path
followed by the crack. An elegant experiment which avoided this difficulty has been
described by Sommer (1969). The experiment involved fracturing circumferentially notched
glass tubes under combined internal pressure and torsion. The pressurized fiuid penetrated
the crack and alleviated the effects of crack face friction. Under these conditions, several
striking features of the crack path were revealed. It appeared that if the ratio of K|;,/K, were
below a critical value, the crack remained in its initial plane and produced a smooth fracture
surface. However, if the loading was such that this ratio was exceeded, then the crack
adopted a wavy configuration. A characteristic pattern was observed in the roughness of
the crack faces. Initially, the roughness had a small wavelength and amplitude, but as the
crack continued to propagate, both the wavelength and amplitude progressively increased.
The slope of the surface roughness was found to increase with crack length.

There have been few theoretical studies of three-dimensional non-planar crack growth.
The main difficulty is that, in order to predict the crack path, it is necessary to calculate
stress intensity factors for cracks with a complicated three-dimensional geometry. Numeri-
cal solutions can be costly and sophisticated adaptive meshing schemes are required in
order to model incremental crack growth. There have been some attempts to extend
Cotterell and Rice’s perturbation method to three-dimensional cracks. For example, Faber
and Evans (1983) assumed that if a crack is deflected slightly from a planar configuration.
the stress intensity factors on the deflected crack front may be found by expressing the
asymptotic crack tip fields as components relative to axes oriented with the perturbed crack
tip. They used their estimates to determine the toughening caused by second phase particles
in a solid, which tend to deflect cracks that run into them. Another method of analysis has
been developed by Gao (1992). Using a perturbation expansion of the stress field around
a planar crack, he attempted to reduce the non-planar crack problem to an equivalent one
involving a planar crack subjected to non-uniform crack face tractions. He used his results
to investigate the stability of an initially planar semi-infinite crack under mixed mode
loading.

The objective of this paper is to develop a three-dimensional model of non-planar
crack growth under mixed mode loading. We begin by describing a perturbation scheme,
which can be used to estimate stress intensity factors for slightly wavy cracks in an isotropic,
linear elastic solid. The method is a three-dimensional analogue of the perturbation scheme
developed by Cotterell and Rice (1980). The spirit of our analysis is similar to Gao’s (1992)
model, but we have used a different method of solution. While Gao’s method is based on
a perturbation expansion of the stress field about a planar crack, we have chosen to perturb
the integral equation for the displacement jump across the crack faces. Both solutions
reduce the wavy crack problem to an equivalent one involving a planar crack loaded by
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prescribed tractions on its faces. The two methods lead to different results and the dis-
crepancy between them is discussed further in Appendix A. The accuracy of our perturbation
method has been investigated by comparing the results to full-field numerical calculations.

We have used the perturbation solution to investigate the path followed by an initially
planar semi-infinite crack, which is subjected to remote loading. In particular, we have
attempted to determine the conditions where the crack may deviate from its initial plane
and propagate in a wavy fashion. For the case of mixed mode I/mode II loading, we recover
the results of Cotterell and Rice (1980). For mixed mode I/mode IIT loading, we have found
that the crack tends to deviate from its initial plane if the ratio of Kj;,/K] exceeds a critical
value, which depends on Poisson’s ratio. The role of 7-stresses which act parallel to the
plane of the planar crack has also been investigated.

Finally, we present some three-dimensional numerical simulations of crack growth
under mixed mode loading. Our solutions were obtained using a boundary integral for-
mulation developed by Xu and Ortiz (1993). The results confirm the stability criteria
predicted by the perturbation analysis. In the cases where the crack propagates along a
wavy path, we have found remarkably good agreement between the numerical results and
experimental observations reported in the literature.

2. PERTURBATION SOLUTION TO NON-PLANAR CRACK PROBLEMS

We begin by describing a method for calculating stress intensity factors at the tip of a
slightly wavy three-dimensional crack. Figure 1 illustrates the problem to be solved. Con-
sider an isotropic, linear elastic solid with shear modulus u and Poisson’s ratio v. Suppose
that the material contains a crack, which lies on an arbitrary non-planar surface S and is
bounded by a smooth curve C. The solid is loaded by a distribution of remote loads and
we wish to determine the resulting distribution of stress intensity factors K,(s), K;;(s) and
Ky (s) on C. In general, this problem is too difficult to solve without recourse to a numerical
method. We therefore simplify the analysis by reducing the non-planar crack problem to
an equivalent one involving a planar reference crack subjected to non-uniform crack face
tractions.

It is well known that a crack in an elastic solid may be represented by a distribution
of dislocations. The distribution is chosen so as to produce the correct displacement jump
across the surface S. Thus, suppose that the stress induced at a point x in the uncracked
solid by the remote loading is ¢ (x). Imagine that the relative displacement of the crack
faces at a point £ on S is known to be u(¢). Then, the stress at x in the cracked solid may
be expressed as

a(x) = a°°(x)+J;F(§, x)Vu(§) d4,, (1)

where V is the gradient operator. Full expressions for F will be given later. Conveniently,
it is found that F depends only on the distance between x and & and on the normal to S at
&, and is otherwise independent of the geometry of the crack. In particular, it does not
depend on the curve C which bounds the cracked surface. In general, the crack face
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Fig. 1. A crack with a reference geometry for which stress intensity factors and weight functions
are known, perturbed to a new geometry.
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displacements are not known a priori, and eqn (1) is used to formulate an integral equation
to be solved for u(&). Since the faces of the crack are free of tractions, we have that

ﬁ [F(E. x)Vu(@)In(x) d4: +t(x) =0 [xeS], 2

where n(x) is the unit normal to the crack surface at x, and t = ¢ (x)n(x). Here, t plays
the role of a distribution of tractions acting on the crack faces, which induce the crack
opening displacements u. Equation (2) is often used as the basis of a boundary integral
method for solving three-dimensional crack problems (Fares, 1989 ; Xu and Ortiz, 1993).

For a few crack geometries, the integral eqn (2) may be inverted explicitly. In this case,
we may write

u(x) = LG(x, Ot d4. 3)

In eqn (3), G(x, &) represents the relative crack face displacements at x due to a pair of unit
point loads acting at a point ¢ on the crack faces. The stress intensity factors may then be
deduced from the asymptotic variation of the crack face displacements u(x) as x approaches
the crack front C. The result may be expressed in the following form

K, (s) = J h*(x, s) * t(x) d 4, (4)
A

where K, is an abbreviation for the three possible stress intensity factors Kj, K;; and Kj,.
In eqn (4), W*(x, s) is the crack face weight function for the solid and represents the stress
intensity factors at a point s on C due to a pair of point loads acting at x on S.

Provided that the weight function h* is known, stress intensity factors for the crack
may be deduced by first calculating the distribution of stress ¢ in the uncracked solid, and
then evaluating the integral in eqn (4). The limitation of this method is that closed form
expressions for h* are known for only two three-dimensional crack geometries. These are a
planar circular crack and a planar semi-infinite crack. However, we will show that these
results may be used to estimate stress intensity factors for cracks which have a geometry
that is close to that of a penny shaped crack, or a planar semi-infinite crack.

Consider the following issue: suppose that there exists a crack with a particular
geometry, characterized by a surface S and a bounding curve C for which F, G and h*
are known. Following the procedure outlined above, we may calculate the crack face
displacements u(x) and stress intensity factors K, for this crack geometry. Now, imagine
that the crack is perturbed slightly from its original configuration (Fig. 1). We choose a
mapping such that x — X, where

% = x+8z()n(x), &= E&+38z(&)n(Y). (5)

Here, n is a unit vector perpendicular to the original crack, and 0z, « 1. As a result, the
opening displacements and stress intensity factors on the perturbed crack become

il = u-+tdu,

K, = K, +3K,. (6)

Our objective is to calculate du and 6K, to first-order in dz.
To this end, we formulate the integral eqn (2) for the perturbed geometry
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J; [F(& DVaOIRR) dAe+1(R) =0 [%eS), M

where fi(X) = n(x) +n(x) is the normal to the perturbed crack at X, and t = e (R)AR).
Now, expanding to first order in each perturbed variable, eqn (7) may be approximated by

J‘* [(F, x)+dF(& x)V(u+dw)]n+dnydde+[t+t] =0, 3
3

where 0t = [Va*dx]n(x) + 0% dn(x) and JF is an abbreviation for

IF(¢,x)

oF(, x)
T éx

oF(x,§) = x ;

®

S+

with 8x = dz(x)n(x), 8¢ = dz(&E)n(&). Using eqn (2) and discarding second-order terms, we
find that eqn (9) may be simplified to

j [F(&, x)Véu(®)ln(x) d4, +t"(x) = 0, (10)

where

t7(x) = [Ve®éx]n(x) +6¥on(x) + J‘ [F(&, x)Vu(&)1on(x) d 4,
5
+ L [6F(&, x)Vu(§)In(x) d4.+ L [F(&,x)Vu(@)n(x)[V - (0z(E)n(E))] dA4,. (1)

Clearly, eqn (10) is the integral equation for a crack of the unperturbed geometry, which
is loaded by crack face tractions ¥ The apparent tractions can be computed for any
perturbation of a three-dimensional crack, regardless of its initial geometry. Then, éu and
8K, may be computed by replacing t by t7 in eqns (3) and (4). Of course, this procedure
can only be applied if the crack face weight functions are available for the initial crack, so
that for practical purposes we are limited to considering cracks which are close to penny
shaped, or close to a semi-infinite crack.

The integrals in eqn (11) must be evaluated with care. Although the tractions 7 are
continuous across the crack faces, the separate integrals which contribute to ¥ are not.
Both the first and second integrals in eqn (11) have different values on the top and bottom
crack faces and must be evaluated through a limiting process by letting x approach the
surface S from above or below. It may be shown that the discontinuous terms in the two
integrals always cancel one another. An example is given in Appendix B, where the integrals
are evaluated for the special case of a planar, semi-infinite crack which is perturbed to a
wavy surface.

There is a second minor complication in applying this procedure. By examining specific
cases, we have found that the integrals in eqn (11) are undefined unless 6z(&) — 0 and
Véz{(&) - 0 as & — x(s). In other words, the perturbed crack must be tangential to the
unperturbed crack at the point s on C where we are calculating 6K, (s). At first sight, this
appears to limit severely the type of perturbations in geometry that we may consider.
However, this difficulty can be circumvented by noting that one can always apply a suitable
rotation and translation to the original crack in order to set up a reference crack, which is
tangential to the perturbed geometry at the appropriate point. It is usually straightforward
to find the change in stress intensity factor associated with setting up the reference crack.
This procedure is illustrated in Appendix B.
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To complete the discussion, we give explicit expressions for the kernel F in eqn (1),
and its perturbation JF in eqn (9). Following the steps outlined in Xu and Ortiz (1993), we
find that

1
[ recovu@ = £ | |exw @ 0@ <vu@as,
+ 1 | w@xvu@ o] @xmk| s

i) J fer x (0() X V@I V(Y ® V-IV3)R] dde, (12)

where summation on 7 is implied. In eqn (12), n(¢) denotes the normal to S at &, I is the
identity tensor and R = |x —£&|. Also, u, are the Cartesian components of u, and e; are the
basis vectors. The symbol V = e,d/0¢&,, while x denotes a vector product and ® a dyadic
product. Now, to perturb the operator and calculate oF, we let & —» é+dz.n(¢), x >
x+0z,n(x) and n > n+4n, and expand each term to first-order, with the result

j‘ OF(x, §)Vu(é)d4;: = % J. [ei X (534 < +0z, )VR‘ ‘} ® (&) x Vu(£)) dA,

on; on,

2 d e ~
+ L (&) x Vu(6)) ® [ei x (5;.75 o, +6z, é>VR ‘] dA;

n,

U

LS N ® (S , Ll
+4nL(e,xVR )®(é)n><Vu,((‘,‘))dA¢+47I

J (Onx Vi, (€)) ® (e x VR ') d4,
S

n
T An(1—v) L [e; x (6n x Vu(§)][V(V® V-IV?)R]d4,

H é 2 ,
~ 0 L [e; x (n x Vi, (§))] [(52,: Fn; +dz, %)V(V ®V-Iv )}{l d4, (13)
where 3R/dn, = [R/2¢]-n(£) and dR/én, = [3R/ox] ().

3. PERTURBATION OF A PLANAR SEMI-INFINITE CRACK WITH A STRAIGHT FRONT

We proceed to apply the perturbation method to calculate stress intensity factors for
a slightly wavy semi-infinite crack. For this case, the original crack geometry is taken to be
a planar, semi-infinite crack which lies on the (x,, x,) plane (Fig. 2). Clearly, this choice of
reference geometry has one limitation : the projection of the perturbed crack front on the
{x,, x;) plane is always straight. This restriction is relaxed in the next section by applying
a second perturbation to the reference crack, but we will ignore this difficulty for now. The
solid is loaded by a uniform distribution of stress ¢® at infinity. The stress components

Perturbed Crack

Reference Crack
Fig. 2. Perturbation of a planar semi-infinite crack into a non-planar configuration.
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6%, 6%, and ¢3 are such that uniform stress intensity factors Kj, Xy; and Ky, are induced
on the planar crack. The corresponding crack opening displacements u are

L=V [—x LJAHl—v) f-x o4 X
u, = Kj i 27[2, u;, = Kj I 2;(*2, u3=Km;£ ”:2'“7;“» (i4)

In addition, the solid may be subjected to so called T-stresses, which act parallel to the
planar crack and so do not induce stress intensity factors, but which induce non-zero stress
intensity factors on the perturbed crack. We will denote the T-stress components by

6% =Ty, 05 =Ty,+veh, o3 =T, (15)

The second of eqn (15) has been written so that if T; = 0, the solid deforms in a state of
plane strain.

Now, suppose that the crack is perturbed slightly from its planar configuration, so that
a point at (0, x,, x3) on the cracked surface is displaced to (dz, x,, x3), with §z; « 1. The
perturbation in geometry must also vanish far from the crack front; éz > 0 as x, » — 0.
We seek to calculate the change in stress intensity factors 6K, (s) at a point s on the crack
front due to this perturbation. To do so, we apply the procedure outlined in the preceding
section.

Evaluating the integrals in eqn (11) for a semi-infinite crack poses some difficulties,
due to the ambiguous nature of the remote loading. The simplest way to avoid this difficulty
is to represent the semi-infinite crack by a bounded slit crack of width ¢, so that the crack
lies in the region {x, =0, —¢ < x, <0, —o0 < x; < o0}. The slit crack is assumed to be
perturbed near one tip. One may then calculate the effective tractions in eqn (11) without
difficulty, and the change in stress intensity factors on the perturbed crack front follow.
Finally, to obtain results for a semi-infinite crack, we let the size of the slit crack ¢ — co.
The details involved in this procedure are somewhat lengthy and are described fully in
Appendix B.

It is shown that two effects contribute to the change in stress intensity factors on the
perturbed crack front. First, one must rotate and translate the planar crack to a reference
configuration, which is tangential to the perturbed crack at the point s. This ensures that
the integrals in eqn (11) are regular. The reference crack is then subjected to a second
perturbation so that it reaches the wavy configuration. In Appendix B, it is shown that the
change in stress intensity factors due to the regularization process is

i
0K = —dz[x(5)] . K — 7 dz[x ()], K7,

SKiE = 6z[x(s)] KT,
OKiif = (1-v)oz[x()] :K7, (16)

accurate to first-order in dz. The remaining contribution to 8K, arises when the crack is
perturbed from the reference configuration to the final wavy surface. It may be calculated
using the following procedure. First, one finds a distribution of effective tractions ¥ that
act on a planar semi-infinite crack. In Appendix B, we show that the tractions are given by

£7(x) =

3"2(51"3‘{’2 +5i3"3)>

{[52(6)“52(")](5&” R?

Kz PVJ 1
(2m)*? sR /¢,

—(1 —v)52,3(§)(r25,-3 - "3512)} dA.f
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Ki; 5,
—(2“)'3/2PVLr\/ljz{&(é‘)—&(x)ﬂl—2v)r35z‘3(¢)}d,45
Kiin (1-2v) 8,720z 5(&)
(27()3/2 (]—V) VJS R3 _52 d

A —T30z2,5(x) — Tj30z 5(x), (17)

where J;; denotes the Kronecker delta and

ro=x—&, R=./rr. (18)

The symbol PV as been used to show that Cauchy Principle Values should be taken for the
integrals.
The stress intensity factors induced by these tractions follow from eqn (4) as

O0K%i(s) = J R(x, $)t57(x) dA,. 19)

The weight functions for a semi-infinite crack may be found in several references (Ulfyand,
1965 ; Kassir and Sih, 1973 ; Bueckner, 1970) and are given by

[2 / —
h11= _3[—)62", h12=h13=0,

x5+ (x;—5)7]

T
2 J —x, (H— 2v [x%—(x3_s)2]>,

™ 24 (x3—9)7] Q—v) X3+ (s —5)%

i f Jx (1 2 [x%—(xs—sV])
PUNT 4G9\ 2-v) B+ (a—9)7)
h,,_hm_\/f «/—x; <—4v X,(x;—35) )
3 = - TC_S )

[x3+ (=9 \Q2 =) [x3+(x3—9)7]

M= hl'=0. (20)

11
hz =

Finally, the stress intensity factors on the perturbed semi-infinite crack are given by
the sum of eqns (16) and (19)

Ki(s) = K" + 0K+ 0K5(s),
Ku(s) = KiY + KB+ 0Ky (5),
Kyi(s) = Kijy + 0K + 0Kfy (s). (21)

As an example, consider a two-dimensional perturbation of the form

Alx X, = —a,
(x2) x2 @)
<

dz(x,) = {0 X,

For this case, the changes in K, due to regularizing the integrals are

—da.

SKE = — (0K,
OKii® = L (OKF,
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oKt = (23)

where A’ = di/dx,. The effective tractions in eqn (17) may be reduced to

—2K7 oy f" 82(8) —9z(x2)
O (B D VA

off _ “2K!ui j{} 0z(&) — 0z(x,)
t5(x;) = Qn)*? PV 700—“”—”‘(5,,)(2)2\/2
157(xz) = = T3d (x,). (29)

17(x,) =

dé— T34 (xy),

Finally, the change in stress intensity factors due to perturbing the reference crack are found
to be '

—K® =i 0

6Kt =5 fim | dxPV j MO 4
AR €01 /Ex

— K*® r-8 ¢ — ] +
oK = If] lim dx PV[ Mdé“Tzz\/éJ A(x) dx,

7Z ﬂ’*0~~a+ﬂ —a (i__x)Z ﬁx ) . /__‘x

ro ’
Kby = —Ts, \/-% £ g, 25)
T j-a /_x

The first two integrals in eqn (25) may be evaluated by expanding A(x) and A({) in
Taylor series about ¢ = x = 0. The only non-zero term in the resulting series is 7°4’(0)/2.
Combining eqns (23) and (25) then gives the stress intensity factors on the perturbed crack

K = Kr—32(0),

l’(X)
Ky = Kt +14(0)— Tzz\[‘[
@/ —X
2 A (x)
Ky = K~ T32\/:J\ (26)
n \/:;

accurate to first order in A. The same results were found by Cotterell and Rice (1980) by
solving the two dimensional problem directly.

The analogous case of a crack which is wavy in the x, direction may also be solved
exactly. To this end, consider a perturbation of the form dz = A sin kx ;. Omitting details
of the calculation, the resulting stress intensity factors are found to be

i 1-2
K (s) = K¢ —K;?Ak{- - (__v_)} sin ks—KfﬁAk{ (1=2v) }cos ks,

2 2 J21-v)

2 1y 4
(2_"v) + \_[5 (ziv)} sin ks— %(VT” sin ks+ 27T, cos ks),

© w 1 v v
Ky (s) = Kif + K Ak{l +v<ﬁ -2)+ (7:‘5 (ﬁ— 1~ m)} cos ks
Af

———(2(1 —v)T;3;3c08 ks—vT,; sin ks). (27)

1
Ky(s) = Ky +K]°°Ak2{

SAS 31:6-C
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The effects of a more general perturbation of the form 6z = A(x;) may be found by taking
a sine transform of &z, using eqn (27) to find the sine transform of §K, and inverting the
result. Similar results were reported by Gao [1993; eqn (38)], but our expressions contain
some additional terms. The cause of this discrepancy is discussed further in Appendix A.

As a final example, which will be useful in the analysis to follow, consider a perturbation
of the form

(a+x)(y+wsinkxy) x,> —a,

62()(2,,\73) = {0 (28)

X, € —a

The shape of the crack which corresponds to this perturbation is illustrated in Fig. 3. It
consists of a planar semi-infinite crack with a wavy kink at its tip. Following the steps
outlined above, we find that the stress intensity factors on the perturbed crack tip are

3 .
Ki(s) = K¢ — 77’ K&+ KT, 5(v, ak)o sin ks — K55 11(v, ak)o cos ks,

Ku(s) = K&t + % KP + Ky (v, ak)o sin ks

2a o .
— 29T, . ”\/2/k[T225222(V, ak)+ T338,33(v, ak)lw sin ks

- Tzn/ﬁ&zs(‘% ak)w cos ks,
Kin(s) = KR+ K T3, (v, ak)w cos ks — / 2/k[T58322(v, ak) + T338333(v, ak)w cos ks

/2 .
—2yT3, ;a — T334/ 2/k S323(v, ak) sin ks (29)

where

3 4
Ji2(v, ) = — 3 + 3 + (1 =2v)AF,(4),

(1-2v)
(1-v)

Jii(v,A) = A[2+ F,()“):‘,

Fig. 3. Semi-infinite crack forming a wavy kink at its tip.
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1 /1 2y
Jy(v, A -]
a(v4) = 2 ) 7y

2
T, 7) = ;,[1—2v- o ~v(1+ 22 )F,(l)+ 2 Fz(l)]

(4) —2F,(4)),

2 A
S222(V, ].) = ﬁ {crfﬂ—v ; C_l},

Sy33(v, A) = ﬁ{3\/%e“*+212 3 rf /1},
sm(v,z)_%{\/%ruﬂz Lot /1},

Snz(v,,l)—%v{erf\/sz %e"l},

s333(v,1)_%{2(1_2v)\[ “+(2A(1—v)+2v—-l)erf\[}

Si23(v, 4) = 2—1—v{—v\/%e“+4—_—g-2\—]—l———verfﬁ}. (30)

In eqn (30), erf denotes the error function and F, and F, are given by the following

expressions ;
RN 0(s)
fidy= 11:3/2L @7 e {<A+is)”2} -

i imi
o) = 5 L @R {(m yo 06 )}

Q(s)=f 1+ ert (= 1)y /o72) + 2P a1

For convenience, F, and F, have been plotted in Fig. 4.

0.00}
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A

Fig. 4. Dimensionless functions F,(1) and F,(1) which appear in the expressions for stress intensity
factors for the crack shown in Fig. 3.
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4. COMPARISON WITH NUMERICAL SIMULATIONS

The final example given in the preceding section serves as a convenient case to test the
range of validity of the results of the first-order perturbation method. With this in mind,
we have used a numerical procedure to calculate accurate stress intensity factors for a crack
with geometry given in eqn (28). Our numerical scheme is a boundary integral method,
which is based on a variational formulation of eqn (2). It is described in detail in Xu and
Ortiz (1993) and will only be summarized briefly here.

Xuand Ortiz (1993) show that the potential energy of a cracked solid may be expressed
as

Plu] = W[u]—[ t-udS {32)

where u are the crack opening displacements and t may be thought of as tractions acting
on the crack faces asin eqn (2). The term W/[u] represents the elastic strain energy associated
with the crack in the solid. It is calculated by representing the crack as a distribution of
dislocations. Xu and Ortiz (1993) give the following expression for W;

Wi =2 J J [e:- () x Vi, (x))] ;- (&) x Vi (€))]

X dA, dA,

K f J le+ @00 x ViG] e, (ME) x Ve @] | o
8n s Js R ¢ ¥

7 J f[e,-x(n(x)xVu,-(x))JT[e,x(n(a:)xVu,(e))l dAcdA. (33)
c s 14 x

t 8=y R
where T is a tensor with components

P OR
VT 6x, 0x,

(34

and the remaining terms have the same meaning as in eqn (12).

To calculate stress intensity factors for an arbitrarily shaped crack, one must find the
distribution of crack opening displacements which minimizes eqn (32). A numerical approxi-
mation is found by dividing the surface of the crack into a number of six-noded triangular
elements, and using quadratic shape functions to interpolate the crack opening dis-
placements within each element. For elements on the crack front, the mid-side nodes are
relocated to quarter-point locations so as to approximate accurately the parabolic variation
of opening displacements. By substituting the resulting expressions for the opening dis-
placements into eqn (32), one obtains a system of linear equations for the opening dis-
placements at discrete points on the cracked surface. One advantage of this formulation is
that the system of equations is symmetric. Finally, the stress intensity factors are deduced
from the asymptotic variation of crack opening displacements near the crack front.

This procedure has been used to calculate stress intensity factors for the crack shown
in Fig. 3, for various values of @ and for a value ak = 2na/L = n. The results are compared
with the predictions of the first-order perturbation analysis [eqn (29)] in Fig. 5. In Fig. 5(a),
we have plotted the variation of K;(s), K;;(s) and K);;(s) along the crack front for a crack
subjected to remote mode I loading. Results are shown for ak ==, v =0.3, y = 0 and
various values of w in eqn (28). It is evident that for small values of w, the numerical results
agree closely with the predictions of the first-order perturbation analysis given in eqn (29).
As the angle of the kink increases, so the predictions of the first-order analysis become
progressively less accurate. This behavior is illustrated further in Figs 5(b-d), which show
the variation in peak values of K, Kj; and K;; as a function of w. Resuits are shown for
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three cases : in Fig. 5(b), the crack is subjected to mode I loading; in Fig. 5(c) it is subjected
to mode I loading ; in Fig. 5(d) results are shown for mode I11 loading. We conclude that,
provided w < 10°, the first-order results approximate closely to the exact solution.

5. PERTURBATION OF A SEMI-INFINITE CRACK WITH A WAVY FRONT

The solutions to non-planar semi-infinite cracks outlined in Section 3 have one limi-
tation; in each case, the projection of the perturbed crack front on the (x,, x;} plane is
straight. We proceed to relax this restriction. It is clear that the choice of reference crack
determines the shape of the projection of the crack front ; to obtain results for more general
crack geometries, one must perturb a planar reference crack which has a wavy front. To
apply this procedure, solutions are required for the stress intensity factors and the crack
face weight functions for the reference crack. While there are no exact solutions for a planar
semi-infinite crack with a generally shaped front, approximate solutions have been found
by Rice (1985) and Gao and Rice {1986). Their results were obtained using a perturbation
method and are accurate provided that the crack front only deviates slightly from a straight
line. We will summarize the results of this analysis here, without discussing the derivation.
For further details, the reader is referred to Gao and Rice (1986).

The problem to be solved is illustrated in Fig. 6. Suppose that a planar, semi-infinite
crack lines in the {x,, x;) plane and is loaded by a uniform distribution of remote stress,
which induces stress intensity factors Ki°, KiJ, Kif; on the crack front. Now, imagine that
the crack front is perturbed slightly in the plane of the crack, so that a point at 5 advances
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Fig. 5. Comparison of the predictions of the first-order perturbation analysis with accurate numerical
simulations. (a) Variation of X along the crack front shown in Fig. 3 for mode [ loading ; maximum
K as a function of kink angle w for (b) mode 1, {c) mode II and (d) mode I1I remote loading.
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Fig. 5. Continued.

a distance da(s). Gao and Rice (1986) show that the stress intensity factors at a point f on
the perturbed crack front are given by

K1) = Ki* + K F3 (1),

2 o s, w23y
Ky() = Kif — 3y Knoa (0 +Kiy ——— F(1),
—~¥ 2—v
21— 2+ )
Ku() = K+ (2 ) Kida' () + K 5 5= Fz(t) (35)
where da” = dda/ds and Fi{f) denotes
1 = da(s) — dalt)
F:;(Z) = 57—: PV j‘w W ds (36}

These results are accurate to first-order in da(s). It is also possible to find expressions for

Reference
Crack Front

Perturbed Crack Front

Fig. 6. In-plane perturbation of a semi-infinite crack.
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the perturbed crack face weight functions h* but we will not require them in the analysis
to follow.

As an example, the stress intensity factors for a semi-infinite crack with a cosine-wavy
front may be calculated by setting da(s) = a+ B sin ks+ C cos ks, which shows that

K(n) = K;"’[l - g(C coskt+B sinkt)],

2

Ky(t) = Ky —K§ — . (C cos kt+ Bsin kt) — Ky — 2 k(B cos kt— C sin ki),
24+vk 2(1 - .

Klu(i) = K[u KIII 2+ (C (8 kt"'B sin kl) + Kn (2—' VV) k(B cos kt—Csin kt). (37)

Clearly, to generalize the results for a wavy semi-infinite crack given in the preceding
section, one may apply two successive perturbations to the crack. The analysis begins by
calculating the stress intensity factors for a planar crack with a straight front. The crack is
perturbed in its own plane and eqn (35) is used to calculate the resulting change in
stress intensity factors. We then perturb the crack a second time, this time in a direction
perpendicular to the plane of the original crack. The effects of the second perturbation may
be found using the method discussed in the preceding section. Provided that the change in
geometry associated with both perturbations is small, one may add the two contributions
to the change in crack tip stress intensity factors.

A generalized version of the perturbation in eqn (28) is of particular interest in the
stability analysis to follow. Suppose that the semi-infinite crack is first perturbed in its own
plane by an amount da(s) = a+ B sin ks+ C cos ks, causing the crack front to adopt a wavy
configuration. Then an out-of-plane perturbation of the form of eqn (28) is applied to the
crack. The resulting configuration of the perturbed crack is similar to the case shown in
Fig. 3, except that the projection of the crack front on the (x,, x;) plane is sinusoidal. The
stress intensity factors on the perturbed crack tip may be expressed in the following form;

K (5) = K?"(I - %(C ¢os ks+ B sin ks))— %ZK??

+ K3 J 5 (v, ak)w sin ks— K5J 1 5(v, ak)w cos k,

2—-3v
Ky(s) = K, + K2, (v, ak)w sinks+K,°i’(l-—i———-~(Ccos ks+Bsmks)>

2a
+Km """"" (C sin ks — B cos ks) — 27T22f = [T2:822:(v, ak)

+ T33.8,33(v, ak) . /2/k sin ks — T538,,5(v, ak)w, /2/:’5 cos ks,

2k(1— )

Kyls) = Ki°J5,(v,ak)w sin ks — Ky ——— -

——(Csin ks— B cos ks)

24+vk
%—: 3 (Ccos ks+ B sin ks)]

K&l 11—
+ m[1 5

2a
—ZYTaz\/‘;“ = [T328322(v, ak) + T335333(v, ak)]w./2/k cos ks

— 7338323 (v, ak)er /2/k sin ks. (38)
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6. STABILITY OF A PLANAR CRACK UNDER MIXED MODE LOADING

The results of our perturbation analysis may be used to investigate the path followed
by a semi-infinite crack propagating under remote stress. Suppose that a planar semi-infinite
crack is loaded so as to induce uniform stress intensity factors K{°, K, Kji; on its front.
The solid may also be subjected to uniform remote T-stresses T,,, T3, T3 If the loads
reach a critical level, the crack will begin to propagate through the solid. In some cir-
cumstances, the crack grows in its initial plane. In others, the crack forms a kink and
propagates at an angle to its initial plane. Finally, there are some combinations of remote
load which cause the crack to propagate along a wavy path, such that the macroscopic
fracture surface remains co-planar with the initial crack, but the crack front deviates from
the (x,, x3) plane and leaves a rough fracture surface in the wake of the crack. Our objective
is to find the conditions necessary for each type of crack growth to occur.

To predict the direction of crack propagation, one must assume an appropriate fracture
criterion. It is beyond the scope of this paper to discuss in detail the various criteria for
mixed mode fracture which have been proposed in the literature. We have chosen a par-
ticular criterion for its simplicity, and it suffices to note that the analysis may be repeated
for other fracture criteria, should it prove necessary. We assume that the crack grows so
that the local mode IT stress intensity factor vanishes at all points on the advancing crack
front. In addition, the energy release rate

- 1
g-_ YKy — K2 (39)
2u I—v

must be uniform (and equal to the fracture toughness of the solid) over all propagating
regions of the crack.

To investigate the stability of the crack, we look for the conditions where it is possible
for a small non-planar kink to form at the crack tip, while satisfying both fracture criteria.
To this end, suppose that the crack extends slightly, so that a point at s on the crack front
advances a distance da(s), at an angle w(s) to the x,, x; plane. For simplicity, we restrict
attention to an increment in crack growth such that

da(s) = a+ Bsin ks+Ccosks, w(s) = y+w sinks. (40)

Recognizing that this crack advance causes the crack to adopt the configuration discussed
in the preceding section, we find that the local stress intensity factors on the kink are given
by eqn (29). The energy release rate on the perturbed crack may then be computed from
eqn (39). We assume that the crack may kink from its initial plane if any combination of
B, C, y, ak and  can be found such that both K;; = 0 and ¢ is uniform along the crack
front.

Consider first the case of a crack subjected to mode I and mode II remote loads, and
assume that the T-stresses vanish. Then, the condition K|, = 0 requires

2-3v Bk _

K&+ ; KP =0, C=0, Kily(ao-Ki5— " 5 =0. (@1
To first-order, the energy release rate on the advancing crack front is
1—v 2 0 0 o0 wy2 Bk :
¢ = j (K —=3KPKE +2| KPK{J (v, ak)w — (K[°) 5 sin ks . (42)

For values of K /K < 1.65 the only solution satisfying both Kj; = 0 and % = constant is
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y=—-2Ky/K{, w=B=0. 43)

This solution corresponds to a kink at the crack tip at an angle y to the initial crack plane.
For values of K7/K{® > 1.65, it is possible to find non-zero combinations of @, B and ak
which satisfy both fracture criteria. However, our perturbation solution is valid only if
y « 1, so the significance of this result is not clear. We conclude that if a crack is subjected
to mode I and mode II loading such that K7/K{® « 1, the crack kinks at an angle y and is
unlikely to develop waviness in a direction parallel to the crack front. This is a well known
result and has been derived by a number of authors using various methods of analysis.

Consider next the case of a semi-infinite crack subjected to combined mode I and mode
111 loading, and again assume that the 7-stresses are negligible. In this case, the condition
K;; = 0 shows that

2Ck
y=0, B=0, K{J;@,ak)w.+Kf = 0. (44)

Substituting for K; and K, into the expression for 4 in eqn (39), one finds that

J 1\% k 2
R ) e (e ki)=0 @

in order to ensure that ¢ is uniform on the tip of the crack. If

Kii < 2\/—2—:’((1_"”13(",1* ©)—=J5(v,A>00) 24v “1/2’ 6
Ky 1—v J21 (v, A = o0) 4

then eqns (44) and (45) have only the trivial solution @ = C = 0. For values of K{5j/K{P
exceeding this value, non-zero values of @, C and ak can always be found which satisfy
both fracture criteria. We conclude that if K{;,/K{° satisfies the condition (46), then the
crack will propagate in its initial plane. Otherwise, the planar configuration is unstable and
the crack is likely to propagate along a wavy path. The critical condition for instability is
plotted as a function of Poisson’s ratio in Fig. 7.

Next, we examine the role of 7-stresses in determining the stability of a mode I semi-
infinite crack. Suppose first that T, is the only non-zero T-stress component. The condition
Ky = 0 is then satisfied by setting
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Fig. 7. Critical loading for a mode I/mode I crack to develop a wavy profile.
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(KT‘ —2T,, %)y =0, (S, a)KP —/2/kT2,82,(v, ak))w sin ks = 0. (47)
The condition % = constant on the propagating crack is satisfied automatically. For
T,; < 0, eqn (47) has only the trivial solution y = @ = 0, so the crack must propagate along
a planar path. For T,, > 0, it is always possible to find values of ¢ and k which allow 7 and
w to be non-zero. Under these conditions, the crack may kink or it may begin to propagate
along a wavy path. We conclude that T,, < 0 is a necessary condition for planar mode |
crack growth to be stable. The same result has been found by several authors, using two-
dimensional perturbation methods.

Following an identical argument, one may show that the T-stress component 7'y plays
a similar role in initiating non-planar crack growth. If T'5; < 0, the crack must remain in
its original plane in order to satisfy Kj; = 0 at all points on the crack front. If T, > 0, a
wavy kink may form at the crack tip so that planar crack growth is unstable. In the same
way, the influence of 7, may be found. It is evident from eqn (29) that for a pure mode |
crack, no combination of parameters in the perturbation can satisfy the criterion Kj, = 0,
irrespective of the magnitude of T',;. This suggests that the crack is likely to propagate in
its initial plane for all values of T',.

We conclude this section with some comments on the limitations of our stability
analysis. Our predictions were made by assuming a particular geometry for the kink forming
at the tip of the semi-infinite crack. It was assumed that the crack was likely to deviate from
its initial plane if any non-planar kink could be found which satisfied appropriate fracture
criteria along the crack front. There are two shortcomings of this approach. Strictly, in
addition to finding an appropriate kinked crack configuration, one should show that the
crack can find a path which reaches the final configuration and satisfies the fracture
criteria during all stages of growth. Secondly, we examined only a limited range of possible
geometries for the kink at the crack tip. That we were unable to find a kink within this
range which satisfies the fracture criteria does not necessarily imply that no such kink
configuration exists. Nevertheless, our predictions are in good agreement with more rigorous
analyses for two-dimensional cracks, and are also confirmed by the full scale numerical
simulations described in the next section.

7. NUMERICAL SIMULATIONS OF NON-PLANAR CRACK GROWTH

Our perturbation solution predicts the combination of remote loads which causes a
planar semi-infinite crack to deviate from its initial plane. However, it gives little indication
of the path followed by the crack during non-planar growth, We address this issue here,
using a full numerical analysis. Several authors have investigated the two-dimensional
problem of a crack propagating under mixed mode I/mode II loading or under the T-stress
component T,,. We therefore restrict our attention to cracks propagating under mixed
mode I/mode I1I loads, or subjected to a remote 7’55 stress component.

The problem to be solved is illustrated in Fig. 3. A semi-infinite crack is subjected to
remote loading. In order to initiate unstable non-planar growth, we assume that the initial
crack has a small imperfection which causes it to deviate from the (x,, x;) plane. The height
A(x,,x5) of the crack above the plane is chosen to be

(x, +a)w[cos (kx;) + € cos (kx:/2) +&* cos (kx;/4)], x,> —a
A(xy,x,) = {0 (48)

Xy < —da.

Values of w = 0.1%/180, ak = n/2, ¢ = 0.25 and v = 0.25 were used in the simulations
reported here. The crack is subjected to far-field loading, parameterized by K°, Kij; and
T54. It is assumed that the crack propagates so that Ky; = 0 and 4 = %, at all points on the
local crack tip, where %, is the fracture toughness of the solid. Crack growth is simulated
by adding successive increments in length to the crack. During each increment, the crack



An analysis of non-planar crack growth under mixed mode loading 2185

is assumed to extend so that a point at s on the crack front advances a distance da(s), at
an angle w(s) to the current crack tip. The crack advance da and angle w are chosen by
iteration to satisfy the fracture criteria. For each iteration, the stress intensity factors are
calculated using the numerical outlined in Section 4. Once a convergent solution has been
found, the crack is re-meshed, a new increment in crack length is added, and the process is
repeated.

The results of our simulations are shown in Figs 8-10. Figures 8 and 9 show the path
followed by a crack subjected to mixed mode I/mode III loads, for two values of K5/K.
Figure 8 is a three-dimensional view of the crack surface. To show the rate of growth of

PAV~ AV A

APSZ A}
Pav. Tav. Ay \
DSSZRSZOS2

RSTSA2SES
\ 4 % SLRSEISIRSH
< A Vo A DSOS A)
Ve T AV T A, X
SO 2K
'\‘ = D00
\

(a)

KD ,
4 f%g%’ "7!’;7;7/4&7//,
Aq}()

74
AR
!&7' (!7;/! / (}7;/107}/(/7

Vv

(b)

7 €’ AN
I
N 4
/ BTSN\
IS
Fig. 8. The path of an initially planar semi-infinite crack subjected to mode I/mode III loads. Note
that the out-of-plane displacement of the crack faces is magnified 150 times. (a) Ky;;/K; = 2; (b)

N
ERIANFLT]
AR KT
e
P4 oty 4
7\
Kiy/K =0.2.



2186 G. Xu et al.
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Fig. 9. A view along the x, axis of the cracks shown in Fig. 8. The out-of-plane displacement of the
crack is magnified 150 times.

the amplitude of the waviness of the crack, a view of both cracks along the x; axis is drawn
in Fig. 9. In each figure, the out-of-plane displacement of the crack faces has been magnified
150 times, to show clearly the nature of the crack path. The amplitude of the waviness of
the crack faces is therefore greatly exaggerated. The loading applied to the crack shown in
Fig. 8(a) is in the regime where unstable non-planar crack growth is predicted. As expected,
the amplitude of the initial waviness of the crack grows exponentially as the crack propa-
gates. The higher frequency components of the initial perturbation grow less rapidly than
the low frequency ones, and the low frequency terms eventually dominate. The wavelength
of the roughness of the crack faces therefore appears to increase as the crack grows. The
pattern of fracture is remarkably close to the experimental observations reported by Sommer
(1969). 1t should be noted that we have restricted our numerical analyses to conditions

\
AV T AWy
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Fig. 10. The path of an initially planar mode 1 semi-infinite crack subjected to remote T3, for Ty
/wal K = 0.75. (a) Three-dimensional view ; (b) view along x, axis. The out-of-plane displacement
of the crack has been magnified 150 times in each figure.
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where the faces of the crack do not contact. In most practical situations, the crack propagates
far enough to ensure that the roughness of the crack faces exceeds the crack opening
displacements. The crack faces then touch, and the fracture process is considerably more
complicated than the cases we consider here.

A contrasting result is shown in Figs 8(b) and 9(b). In this case, the crack is subjected
to mode I/mode IIT loads, with the ratio Kf;;/Ki° = 0.2. This combination of loads is in the
regime were stable planar growth is predicted. Under these conditions, the amplitude of
the perturbation in crack geometry grows very slowly. At the same time, high frequency
components of waviness tend to die out, so that the roughness of the crack faces decreases
as the crack grows. Eventually, the crack returns to a planar configuration, confirming the
predictions of the stability analysis given in the preceding section.

Finally, Fig. 10 shows the behavior of a mode I crack subjected to a positive T's3, with
a magnitude T 33\/aTa/K = 0.75, where g and w are the parameters governing the ampli-
tude of the initial imperfection in the crack geometry defined in eqn (48). Under this loading,
the planar crack configuration is unstable. As expected, the numerical simulations show
that the waviness of the cracked plane increases as the crack grows. Qualitatively, the nature
of the fracture surface is similar to the results obtained for mixed mode I/mode III cracks;
the low frequency terms in the initial imperfection grow more rapidly than high frequency
ones, so that the wavelength of the roughness appears to increase as the crack grows.

8. CONCLUSIONS

A perturbation method has been developed for calculating stress intensity factors for
slightly non-planar cracks. The method reduces the non-planar crack problem to an equi-
valent one, involving a planar reference crack loaded by a fictitious distribution of tractions
on its faces. Expressions for the effective tractions were calculated by perturbing the integral
equation governing the opening displacements on a planar crack. The method was used to
calculate stress intensity factors for slightly wavy semi-infinite cracks subjected to remote
loading. For the particular case where the crack has no waviness in a direction parallel to
the crack front, we recovered the two-dimensional solutions derived by Cotterell and Rice
{1980). However, our results do not agree with the predictions of an alternative perturbation
method derived by Gao (1992). The cause of this discrepancy is discussed in Appendix A.
To investigate the range of validity of our perturbation solution, we have compared its
predictions to full numerical solutions. It was shown that the perturbation solution is
accurate even for relatively large deviations of the crack from a planar configuration. In
principle, our analysis could also be used to calculate stress intensity factors for slightly
non-planar penny shaped cracks, although it would be a formidable undertaking to evaluate
some of the integrals involved in the solution.

The perturbation scheme was used to predict the path followed by an initially planar
semi-infinite crack subjected to remote loads. It was shown that three general types of crack
propagation may occur. For some combinations of remote loads, the crack remains in its
initial plane. Alternatively, it may kink and propagate at an angle to the initial crack.
Finally, in some circumstances the crack may propagate along a wavy path, such that the
macroscopic fracture surface remains co-planar with the initial crack, but the crack front
deviates from the (x,, x3) plane and leaves a rough fracture surface in the wake of the crack.
For a crack subjected to mixed mode I/mode 1II loading, it was shown that the crack will
always kink if K, # 0, but is unlikely to develop a wavy profile. A crack subjected to mixed
mode I/mode III loads develops a wavy profile if the ratio K;;;/K exceeds a critical value.
The critical ratio is shown as a function of Poisson’s ratio in Fig. 7. The role of T-stresses
in governing the path of a mode I crack was also investigated. A positive T-stress in a
direction perpendicular to the crack front (7, in Fig. 3) may cause the crack to kink or
develop a wavy profile. A positive T-stress parallel to the crack front (T;;) causes the crack
to develop a wavy profile. The component T,; appears to have no affect on the crack path.

Finally, we have used a numerical technique to calculate the path of a crack propagating
under mixed mode remote loading. The results confirm the predictions of our stability
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analysis. In addition, the predicted crack path closely resembles experimental observations
reported in the literature.
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APPENDIX A

A first-order estimate of the stress intensity factors for slightly wavy three-dimensional cracks has been found
by Gao (1992), using an alternative perturbation method. Since our solution does not agree with his, we investigate
the difference between the two approaches in more detail in this appendix. We begin by summarizing Gao’s
derivation. Suppose that an infinite solid contains a crack which lies on a slightly wavy surface S. For simplicity,
assume that the loading consists of a remote stress @, and that the crack faces are traction free. We wish to
calculate the state of stress ¢ which surrounds the wavy crack. As a starting point, imagine that the stress field
induced by this loading is known for a planar crack, lying on a surface S, which is the projection of S on the
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X2, X; plane. Denote this solution by &. We now pose the following question; what additional tractions £ should
one distribute on the planar crack faces, in order to free the surface § from tractions?

Gao calculates the effective tractions by introducing a perturbation expansion of the state of stress g. To this
end, let the state of stress around the wavy crack be

(X1, X3, %3) = 6(x1, X3, X3} + 00 (X, X3, X3), (A1)

where 8a is a small correction to ¢ introduced to satisfy the boundary conditions on S. On the wavy surface §,
one has

06(0, x,, x3)

o 82(x,,x4) + 600, x5, x3) + O(5z%), (A2)
1

G =0(0,x,,x;)+

where 0z is the height of § above §. The boundary conditions on $ are
éa=10 (A3)

where i = e, — §z ,e,—dz ;e; is the normal to , e, being the basis vectors. Substituting eqn (A2) into eqn (A3),
using a{0, x,, x;)e, = 0 and neglecting second-order terms in dz, one finds that

66(0, x,, x3)€; = 6(0, x5, x3)[02 e, + 0z 3e,] —[6z0  Je,. (Ad)
We now interpret eqn (A4) as boundary conditions on the (x,, x;) plane for the stress state a. The right hand
side of eqn (A4) is therefore the distribution of effective tractions acting on the planar reference crack.

We may compare this result with our expression for the effective tractions in eqn (11). Note first that for a
planar reference crack, the last integral in eqn (11) vanishes. From egn (1) it is evident that

(0, x,, x3)[0z 8,4+ 52 ¢;] = [c°°]5n+J. [F(&, x)Vu()]on(x) d4. (AS)

Differentiating eqn (1), one finds that

OF(,x)

[6z0 Je, = [Vo*ix]n(x) +J‘ [éz(x) Vu (E)]n(x) dA. (A6)

The integral in eqn (A6) must be interpreted with some care; it is undefined if x lies on S and must be evaluated
by taking the limit as x approaches the crack faces. This reflects the fact that some components of the stress field
surrounding a crack may be discontinuous across the cracked surface. Finally, using eqn (9) one finds that our
expression for the effective tractions given in eqn (11) contains an additional term which is not present in eqn
(A4). This term is given by

J [5 (g)am X Vn(f)]n(x) dA,. (A7)

To understand the cause of the discrepancy between Gao’s solution and ours, it is instructive to interpret the
physical significance of this term. Note that

a(x) = J; F(&, x)Vu(§) d4, (A8)

represents the state of stress o at a point X, induced by the displacement jump distribution u(¢) across the planar
surface S. Now, suppose that we move the same displacement jump from S to the new surface S. This changes
the stress at x by an amount

Sa(x) = L F(£, x)Vu(é) d4; —J; F(E,x)Vu(£) d4,, (A9)

where £ = £+ 8z(£)e,. One may expand eqn (A9) to first-order in 8z, with the result

do(x) = j[é () F(§, )Vu(ﬁ)] dd,+0(827). (A10)

Thus, we see that the additional term in our solution represents the effect of moving the opening displacements
u(¢) from the planar surface S to the wavy surface S.

This shows that if one interprets Gao’s derivation as a strict superposition of two equilibrium stress states,
the derivation does not give the stress field around a wavy crack subjected to remote loading. Instead, his solution
represents a planar crack, which is subjected to a combination of remote loading together with an additional
distribution of traction on its faces. The additional distribution of traction happens to free the wavy surface $
from stress. There is a subtle difference between this solution and the correct solution to a wavy crack under
remote loading. In the correct solution, there should be a displacement jump across the wavy surface S, and the
solution should contain no discontinuities in traction. In Gao’s solution, the displacement jump seems to occur
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across the planar surface S. In addition, if one calculates the effective tractions using Gao's expressions, one finds
that the tractions have different values on the upper and lower crack faces. Therefore, his solution also appears
to contain an inadmissible traction jump across S.

One may develop a construction somewhat similar to Gao’s, which would lead to our expressions for cffective
tractions. It begins with the solution to a planar crack subjected to remote loading. Let u(€) denote the opening
displacements for the planar crack. Next, we move the same opening displacements to the wavy surface S. This
step does not appear in Gao’s derivation. Moving the opening displacements causes a change in stress, which may
be calculated using eqn (A10). The new stress distribution does not satisfy the boundary conditions on the wavy
crack faces. Therefore, one must distribute additional tractions over the crack faces in order to free them from
normal and tangential stress. The tractions are given by the sum of eqn (A4) and the additional term in eqn (A7).
Finally, to compute stress intensity factors for the wavy crack, one may assume that the wavy crack has the same
crack face weight functions as the planar reference crack, accurate to first-order in dz. Therefore, the change in
stress intensity factors follow from eqn (4). This approach leads to the results we gave in Section 2.

Finally, we note that the preceding discussion has shown only that Gao’s expressions for effective tractions
differ from our results. This does not necessarily imply that the two methods give different results for stress
intensity factors on the wavy crack. In fact, for the particular case of a two-dimensional perturbation of a semi-
infinite crack, given in eqns (22) et seq., both methods give identical results. The examples given in Section 3 show
that for fully three-dimensional perturbations, the two methods do lead to different expressions for stress intensity
factors. The results of the full-field numerical simulations which we reported in Section 4 give encouraging support
for the results we derive in this paper. However, the slightly non-planar 3D crack problem would be worthy of
further study to clarify the differences between Gao’s results and ours.

APPENDIX B: CALCULATING STRESS INTENSITIES FOR A WAVY SEMI-INFINITE CRACK

Here we describe in detail the steps leading to eqns (16)~(19) which give the stress intensity factors for a
slightly wavy semi-infinite crack. There are some difficulties in interpreting the nature of the remote loading
applied to a semi-infinite crack. To avoid these difficulties, we imagine perturbing a large slit crack which lies in
the region {x, =0, —¢ < x, < 0—00 < x; < oo} (Fig. B1). Far from the crack, the solid is subjected to a uniform
state of stress. We assume that the loading induces stress intensity factors K{*, Kji and Kjj; on the planar slit

crack. Therefore,
[2 2 2
of1 = [— K, 0‘1‘2=\/—Kﬁ’, 07‘3=\/*Kﬁ';- (B1)
ne ne nc

In addition, the solid may be subjected to T-stress components, which we denote by

/2
65 =Th, o053 =Ty+v EKELQ a3y =Ty (B2)

The second eqn of (B2) has been written so that if T;; = 0, the solid deforms in a state of plane strain. The loading
induces opening displacements on the slit crack which are given by

=ML e,

LN

41— K —

Uy = (# V ﬁ;\/—xz(wxz/c).

4 K, e —

=- 2/ —x(l+x,/0). (B3)
u\/’z}‘/

Us

Now, suppose that the slit crack is perturbed slightly from its planar configuration. Assume that the f:ragk
is perturbed only in the region {—a < x, <0, —0 < x; < o0} so that a point at (0, x,, x3) within this region is
displaced to (6z, x5, x3). The rest of the crack is assumed to remain planar. We now apply the procedure outlined
in Section 2 1o calculate the change in stress intensity factors 8K, (s) at a point s on the perturbed crack front.

.

X
o~ 2
c N \ Original Crack

Fig. B1. A planar slit crack which is perturbed to a wavy configuration near one tip.

Perturbed Crack
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The first step is to rotate and translate the planar crack so that it is tangent to the perturbed crack at the
point 5. The required translation is d = dz{x(s)]e,, while the rotation is @ = ye,+we,, where w = 9z ,[x(s)] and
y = 8z 3[x(s)]. Translating the crack causes no change in the stress intensity factors, while rotating it is equivalent
to rotating the remote stress field through an equal and opposite angle. Thus, the change in stress intensity factors
caused by setting up the reference crack is

SK* = —20KF —-2yK,
SKI = 0K — (T +yTa3)/ 7e/2,
SKR = (1=v)yKF —(@Ts3 +7T53)y/ne/2. (B4)

Next, the reference crack is subjected to a second perturbation so as to reach the required geometry. The
additional perturbation 62" is given by

8z(x) = dz(x) — dz[x(s)] —x,0—X17. (B5)
The change in stress intensity factors due to this perturbation must be calculated by evaluating the effective
tractions using eqn (11), and then substituting into eqn (4). We will evaluate each integral in eqn (11) in turn.

Note first that for a uniform state of remote stress, the first term in eqn (11) vanishes. To evaluate the second and
third terms, note that

o(x) =6% +j F(¢, x)Vu($) d4, (B6)

represents the stress ¢ at a point x in a solid containing the unperturbed crack, by eqn (1). The stresses on the
faces of the slit crack may be found from the exact solution to this problem, and are

2(x2+c/2)
f’ziz:‘Kl\/7+Kx1 / e+ Ty,
* S =x(xy+¢)

f / 2(x2+c/2)
63 = —vKP +VK +75;,
R S —x3(xp4+0)
2 x,+¢/2
o3 = FK b2 / ) — (B7)

=X (x,40)

All the remaining components of stress are zero on the crack faces. In eqn (B7), the symbols ¢+ and 6~ have been
used to denote the stresses on the upper and lower crack faces, respectlvely Noting that dn(x) =

— 825 (x)e, — 825 (x)e, for the planar crack, we find that the second and third terms in eqn (11) give rise to the
following contribution to the effective tractions

H(x) =0,
13(x) = —82§(Wa 5, — 0z (X)o ks,
5 (x) = 0¥ (x)o 3 — 8z (X)o §i. (B8}

Here, we have used ¢ and ¢ to denote the tractions acting on the upper and lower crack faces, respectively.
Next, consider the contribution to t*¥ from the second integral in eqn (11). For a planar slit crack with
opening displacements given by eqn (B3), the integrals may be reduced to the following form

Kw n 2 .
1= lim J‘ M) (5 — 5z'=f(x)){15”2" 30 —~3é"r]r2}dA<

C T EmT amre Jg R R R

+ (2:);;/2 ,}E.“JOJS (52) {(6 Q) - 52M(x)){ ”rl e s

B R
du "}wsz(:){(z Voo — ’;"3}]@1(

Kiy (-2 . [ MG s .
* G oy, f [3(1 W) — 32 (X)) 2

—52”'{(2~v)r, 3 ”"’H d4,

K M(é‘z)
@n)** Js

() - 5z'='(x)1< —--—~3’2(‘5‘”’2“ﬁ‘—”’—))

R2

— (1 =)z E)rads —~ "36.2)} d4,

SAS 31:6-D
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Kz J\fsnM(éz)
S

T I {82°1(&) — 82 (x) + (1 —2V)r, 325 (E)} d 4,

dA,, (B9)

4 Kl —2v) 8urydz5(QM(E;)
@m* (1 - fs R

where §,; denotes the Kronecker delta and

(1+28,/0)

=&+

In eqn (B9), the first three integrals have different values on the upper and lower crack faces, and must be evaluated
by taking their limit as r; — +0. In the remaining integrals, one may set r, = 0 before integration, provided that
Cauchy Principal Values are taken.

The first three integrals in eqn (B9) may be evaluated explicitly, using the following procedure. Note that as
r, — 0, each of the first three integrands becomes singular, with a singularity of order 1/R%as & —» x. Itis convenient
to extract the singular part of each integral as follows;

ri=x;—&, R=./rr, M()= (B10)

J\G(x,é) d4, =J G(x,&)dAﬁ-J G(x, & d4A,, (BI1)
5 S—p »

where G(x, §) has been used to denote the integrand and p is a small region surrounding the singular point at x.
The shape of this region is arbitrary; a small square around x such that {&, =0, —e<&,—x, < +5¢,
—& < £3—x, < +¢} is a convenient choice. Now, the integrals over the region S— p are regular, so one may let
r, — 0 in the integrands before integration. The integrals over S— p therefore vanish. To evaluate the integrals
over p, we expand 62°'(&) and its derivatives in a Taylor series about x, so that, for example,

SZN(E) = 82™(X) — 1,02 (X) — r 82T (X) + - (B12)

After substituting this approximation into the first three integrals in eqn (B9), the integrals over p may be evaluated
explicitly. Then, we let r, — 0 in the resulting expressions and finally take the limit ¢ — 0. This procedure shows
that the first three integrals in eqn (B9) give rise to the following contribution to the effective tractions;

ti(x} =0,

; 5 20142 @ 142
tH{x) = ?52f§f(x)K—1 (1+ ifz/C) T629(x) K *_( +2x,/6)

\/2" m —\/3;7;  —x,(1 +x2/ci’

Ky 2(1+2 K 142
1 (1+42x,/c) T625(x) i (1+ xZ/c)w

(%) = Fvéz(x) —= NN e,
X voz S (x \/fn\/:m

(B13)

NN

Note that the final term in eqn (11) vanishes for a planar crack. Therefore, collecting terms from eqns (Bg),
(B9) and (B13), we find that the effective tractions reduce to

—K§ M
=G i PV £ 1(532) [(&“’(5) ~8z%(x)) + (1— 2v)r3.szf§f] dd,
Kin (1-2v) M(C2)

+ (27{) 372 (I ___v) s Rs rzéz.(?’(f) dA{s

Xy M 3
i = oy | [(éz"‘(r:) -éz“f(x))(l -3 %)+ a —V)éz,'?(é)rs] da,
+ 6zfz‘(x)1<r*\/g; 62§00 T2 =025 (0 T,
—Ky M 2
5 = (27% P f }(éz) [3(52"‘(&) ~8z°(x}) % + {1 v)ész(f)er dA,

/2
+ZS VKT [ — — 823 () Tos =825 (0 Ts. (B14)

Note that the tractions now have the same value on both upper and lower crack faces.

To proceed, substitute the expression for 8z given in eqn (B5) into eqn (B14). Note that the terms involving
y and @ may be integrated explicitly. Furthermore, the contribution to ¢ due to these terms is independent of
x5. Consequently, one may find the stress intensity factor change due to these tractions by using the two-
dimensional (plane strain) weight function for a slit crack. We find that the changes in stress intensity factors due
to terms involving y and w in eqn (B14) are
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K7 K (1-2
5K}yw=“)n2n 11+}’ 2m ( v)

1,

n’ (1—v)
oK® 20K
OKY = - I~ = L+ (@Ta +9To)/mel2,
wKE  2wKE
SKI2 = 7;2‘ I— ’;‘ L+ (@T;, +9T5 )3 /72, (B1S)
where
-8 0 1
1, =}}in{;}j devf U+2/0) J1+xe o o2

~e+f e (E—x)/Ex J1+Ec

* fl4x/e n
12 = . ‘:_? dx = E (B16)

Now, if we let dK® = K"+ 0K denote the change in stress intensity factor due to the combined effects of
rotating the planar crack to a reference configuration [given in eqn (B4)}, and due to evaluating the terms involving
y and w in eqn (B14), we find that K7* reduces to the expressions given in eqn (16).

Finally, we examine the terms which remain in eqn (B14) after subtracting terms containing y and w. These
are given by eqn (B14), with 52™ replaced by 8z. Since 6z = 0 for £, < —a, one may let ¢ — oo in the remaining
terms before integration. One may then let ¢ — oo, whereupon eqn (B14) reduces to the expression for effective
tractions given in eqn (17).



